Overview of a PQC proposal: the Picnic signature scheme

Luis Brandao and Rene Peralta<sup>1</sup>

<sup>1</sup>National Institute of Standards and Technology (Gaithersburg, USA)

NIST-internal PQC meeting May 4<sup>th</sup>, 2018 (Gaithersburg, USA)



## Outline

 $1. \ {\rm Introduction}$ 

2. Primitives and other ingredients



### Outline

#### $1. \ {\rm Introduction}$

2. Primitives and other ingredients

# The Picnic proposal

#### **Highlights:**

- A signature scheme (KeyGen, sign, verify)
- No number theoretic or structured hardness assumptions
- Security reduction to symmetric primitives (hash, block-cipher)
- Construction based on a ZKPoK
- Ingredients: Σ protocol, Fiat-Shamir and Unruh transforms, "MPC in the head"

## A pre-quantum computers approach

Given  $P, g, g^x$ , I claim I know x

Given  $P, g, g^x$ , I claim I know x

▶ I pick random k, c and post  $g^k, c$ , and  $(k + xc) \mod (P-1)$ .

Given  $P, g, g^x$ , I claim I know x

- ▶ I pick random k, c and post  $g^k, c$ , and  $(k + xc) \mod (P-1)$ .
- Verification is :

$$g^{k+xc}=g^k(g^x)^c.$$

Given  $P, g, g^x$ , I claim I know x

- ▶ I pick random k, c and post  $g^k, c$ , and  $(k + xc) \mod (P-1)$ .
- ► Verification is :

$$g^{k+xc}=g^k(g^x)^c.$$

This is a ZK proof of knowledge (of x) provided you believe I generated **first**  $g^k$  and then c at random.

Given  $P, g, g^x$ , I claim I know x

- ▶ I pick random k, c and post  $g^k, c$ , and  $(k + xc) \mod (P-1)$ .
- Verification is :

$$g^{k+xc}=g^k(g^x)^c.$$

This is a ZK proof of knowledge (of x) provided you believe I generated **first**  $g^k$  and then c at random.

• This seems to work: I'll set  $c = Hash(g^k)$ .

Given  $P, g, g^x$ , I claim I know x

- ▶ I pick random k, c and post  $g^k, c$ , and  $(k + xc) \mod (P-1)$ .
- Verification is :

$$g^{k+xc}=g^k(g^x)^c.$$

This is a ZK proof of knowledge (of x) provided you believe I generated **first**  $g^k$  and then c at random.

- This seems to work: I'll set  $c = Hash(g^k)$ .
- ▶ If you want a signature of a message M, set  $c = Hash(g^k || M)$ .

Given  $P, g, g^x$ , I claim I know x

- ▶ I pick random k, c and post  $g^k, c$ , and  $(k + xc) \mod (P-1)$ .
- Verification is :

$$g^{k+xc}=g^k(g^x)^c.$$

This is a ZK proof of knowledge (of x) provided you believe I generated **first**  $g^k$  and then c at random.

- This seems to work: I'll set  $c = Hash(g^k)$ .
- If you want a signature of a message M, set c = Hash(g<sup>k</sup>||M).
  This is a Schnorr signature (I think).





- given U and Y, I claim I know X



In Picnic :



is an encryption function called LOW MC

Y is the encryption of U under key X



- private key sk is X



As in Schnorr's signature scheme, we will first need a ZK proof of knowledge of X.

## A circuit-based S3PC setup

A circuit-based S3PC setup

#### ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that v = a1 + a2 + a3

#### ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that v = a1 + a2 + a3

Give share i to player Pi

#### ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that v = a1 + a2 + a3

Give share i to player Pi

for each gate: propagate the shares from inputs to output

#### ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that v = a1 + a2 + a3

Give share i to player Pi

for each gate: propagate the shares from inputs to output

<u>for each output wire:</u> reveal the three shares

#### ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that v = a1 + a2 + a3

Give share i to player Pi

<u>for each gate:</u> propagate the shares from inputs to output



<u>for each output wire:</u> reveal the three shares

A circuit-based S3PC setup

#### INITIAL INPUT SHARES AND RANDOM BITS



## A circuit-based S3PC setup

### COMMUNICATE



#### **OUTPUT SHARES**

 $c_i = a_i b_i + a_i b_{i+1} + a_{i+1} b_i + k_i + k_{i+1}$ 



# A circuit-based S3PC setup

### COMMIT



## A circuit-based S3PC setup

#### **DECOMMIT TWO**



## A circuit-based S3PC setup

#### VERIFY

### $c_2 = a_2 b_2 + a_2 b_0 + a_0 b_2 + k_2 + k_0$



## A circuit-based S3PC setup

#### VERIFY

### $c_2 = a_2 b_2 + a_2 b_0 + a_0 b_2 + k_2 + k_0$



### Outline

1. Introduction

2. Primitives and other ingredients

# Primitives and other ingredients

- Commitment schemes
- Zero Knowledge Proofs of knowledge (ZKPoKs)
- ► Transformation for non-interactivity: Fiat-Shamir, Unruh
- Low-MC and SHA3
- MPC in the head
- PRNG using SHAKE

### Parameters

| Parameter Set | S   | n   | k   | s  | r  | Hash/KDF | Digest length | T   | Public key | Private key | Signature |
|---------------|-----|-----|-----|----|----|----------|---------------|-----|------------|-------------|-----------|
| picnic-L1-FS  | 128 | 128 | 128 | 10 | 20 | SHAKE128 | 256           | 219 | 32         | 16          | 34000     |
| picnic-L1-UR  |     |     |     |    |    |          |               |     | 32         | 16          | 53929     |
| picnic-L3-FS  | 192 | 192 | 192 | 10 | 30 | SHAKE256 | 384           | 329 | 48         | 24          | 76740     |
| picnic-L3-UR  |     |     |     |    |    |          |               |     | 48         | 24          | 121813    |
| picnic-L5-FS  | 256 | 256 | 256 | 10 | 38 | SHAKE256 | 512           | 438 | 64         | 32          | 132824    |
| picnic-L5-UR  |     |     |     |    |    |          |               |     | 64         | 32          | 209474    |