Overview of a PQC proposal: the Picnic signature scheme

Luis Brandao and Rene Peralta ${ }^{1}$

${ }^{1}$ National Institute of Standards and Technology (Gaithersburg, USA)
NIST-internal PQC meeting May 4 $^{\text {th }}, 2018$ (Gaithersburg, USA)

Outline

1. Introduction
2. Primitives and other ingredients

Outline

1. Introduction

2. Primitives and other ingredients

The Picnic proposal

Highlights:

- A signature scheme (KeyGen, sign, verify)
- No number theoretic or structured hardness assumptions
- Security reduction to symmetric primitives (hash, block-cipher)
- Construction based on a ZKPoK
- Ingredients: Σ protocol, Fiat-Shamir and Unruh transforms, "MPC in the head"

A pre-quantum computers approach

Given P, g, g^{x}, I claim I know x

A pre-quantum computers approach

Given P, g, g^{x}, I claim I know x

- I pick random k, c and post g^{k}, c, and $(k+x c) \bmod (P-1)$.

A pre-quantum computers approach

Given P, g, g^{x}, I claim I know x

- I pick random k, c and post g^{k}, c, and $(k+x c) \bmod (P-1)$.
- Verification is :

$$
g^{k+x c}=g^{k}\left(g^{x}\right)^{c} .
$$

A pre-quantum computers approach

Given P, g, g^{x}, I claim I know x

- I pick random k, c and post g^{k}, c, and $(k+x c) \bmod (P-1)$.
- Verification is :

$$
g^{k+x c}=g^{k}\left(g^{x}\right)^{c} .
$$

This is a ZK proof of knowledge (of x) provided you believe I generated first g^{k} and then c at random.

A pre-quantum computers approach

Given P, g, g^{x}, I claim I know x

- I pick random k, c and post g^{k}, c, and $(k+x c) \bmod (P-1)$.
- Verification is :

$$
g^{k+x c}=g^{k}\left(g^{x}\right)^{c} .
$$

This is a ZK proof of knowledge (of x) provided you believe I generated first g^{k} and then c at random.

- This seems to work: I'll set $c=\operatorname{Hash}\left(g^{k}\right)$.

A pre-quantum computers approach

Given P, g, g^{x}, I claim I know x

- I pick random k, c and post g^{k}, c, and $(k+x c) \bmod (P-1)$.
- Verification is :

$$
g^{k+x c}=g^{k}\left(g^{x}\right)^{c} .
$$

This is a ZK proof of knowledge (of x) provided you believe I generated first g^{k} and then c at random.

- This seems to work: I'll set $c=\operatorname{Hash}\left(g^{k}\right)$.
- If you want a signature of a message M, set $c=\operatorname{Hash}\left(g^{k} \| M\right)$.

A pre-quantum computers approach

Given P, g, g^{x}, I claim I know x

- I pick random k, c and post g^{k}, c, and $(k+x c) \bmod (P-1)$.
- Verification is :

$$
g^{k+x c}=g^{k}\left(g^{x}\right)^{c} .
$$

This is a ZK proof of knowledge (of x) provided you believe I generated first g^{k} and then c at random.

- This seems to work: I'll set $c=\operatorname{Hash}\left(g^{k}\right)$.
- If you want a signature of a message M, set $c=\operatorname{Hash}\left(g^{k} \| M\right)$. This is a Schnorr signature (I think).

Picnic - illustration at high-level

is a one-way function

Picnic - illustration at high-level

- given U and Y, I claim I know X

Picnic - illustration at high-level

In Picnic :
is an encryption function called LOW MC
Y is the encryption of U under key X

Picnic - illustration at high-level

- public key pk is (U,Y)
- private key sk is X

Picnic - illustration at high-level

> As in Schnorr's signature scheme, we will first need a ZK proof of knowledge of X .

A circuit-based S3PC setup

A circuit-based S3PC setup

ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that $v=a 1+a 2+a 3$

A circuit-based S3PC setup

ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that $v=a 1+a 2+a 3$

Give share i to player Pi

A circuit-based S3PC setup

ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that $v=a 1+a 2+a 3$

Give share i to player Pi
for each gate: propagate the shares from inputs to output

A circuit-based S3PC setup

ON A CIRCUIT FOR LOW MC

for each input wire: split its boolean value v into three random shares a1, a2, a3 such that $v=a 1+a 2+a 3$

Give share i to player Pi
for each gate: propagate the shares from inputs to output

for each output wire: reveal the three shares

A circuit-based S3PC setup

ON A CIRCUIT FOR LOW MC
for each input wire: split its boolean value v into three random shares a1, a2, a3 such that $v=a 1+a 2+a 3$

Give share i to player Pi
for each gate: propagate the shares from inputs to output

NEXT
$\longrightarrow-$
for each output wire: reveal the three shares

A circuit-based S3PC setup

INITIAL INPUT SHARES
 AND RANDOM BITS

A circuit-based S3PC setup

COMMUNICATE

A circuit-based S3PC setup

OUTPUT SHARES

$$
c_{i}=a_{i} b_{i}+a_{i} b_{i+1}+a_{i+1} b_{i}+k_{i}+k_{i+1}
$$

A circuit-based S3PC setup

COMMIT

A circuit-based S3PC setup

DECOMMIT TWO

A circuit-based S3PC setup

VERIFY

$$
c_{2}=a_{2} b_{2}+a_{2} b_{0}+a_{0} b_{2}+k_{2}+k_{0}
$$

A circuit-based S3PC setup

VERIFY

$$
c_{2}=a_{2} b_{2}+a_{2} b_{0}+a_{0} b_{2}+k_{2}+k_{0}
$$

C_{2}
note that this verifies only one out of three output shares

Outline

1. Introduction

2. Primitives and other ingredients

Primitives and other ingredients

- Commitment schemes
- Zero Knowledge Proofs of knowledge (ZKPoKs)
- Transformation for non-interactivity: Fiat-Shamir, Unruh
- Low-MC and SHA3
- MPC in the head
- PRNG using SHAKE

Parameters

Parameter Set	S	n	k	s	r	Hash/KDF	Digest length	T	Public key	Private key	Signature
picnic-L1-FS picnic-L1-UR	128	128	128	10	20	SHAKE128	256	219	32	16	34000
picnic-L3-FS picnic-L3-UR	192	192	192	10	30	SHAKE256	384	329	48	48	24
picnic-L5-FS picnic-L5-UR	256	256	256	10	38	SHAKE256			64	24	36740

